Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Lung Cancer ; 25(2): 91-99, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38135566

RESUMO

Central nervous system (CNS) metastases are frequently diagnosed in patients with non-small cell lung cancer (NSCLC). Only recently, clinical trials are broadening eligibility to include patients with brain metastases, offering the potential for some assessment of CNS efficacy to be made. In this work we aim to review the available information on the activity of small molecule targeted drugs for advanced NSCLC with respect to CNS metastases. We analyze a framework for evaluation assessment regarding trials of systemic agents being conducted in patients with, or at risk from, CNS metastases, and provide examples of NSCLC targeted therapies evaluated in the CNS.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias do Sistema Nervoso Central , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/secundário
2.
Mol Neurobiol ; 60(3): 1179-1194, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36422814

RESUMO

Neuropathic pain is a common chronic condition, which remains poorly understood. Many patients receiving treatment continue to experience severe pain, due to limited diagnostic/treatment management programmes. The development of objective clinical diagnostic/treatment strategies requires identification of robust biomarkers of neuropathic pain. To this end, we looked to identify biomarkers of chronic neuropathic pain by assessing gene expression profiles in an animal model of neuropathic pain, and differential gene expression in patients to determine the potential translatability. We demonstrated cross-species validation of several genes including those identified through bioinformatic analysis by assessing their expression in blood samples from neuropathic pain patients, according to conservative assessments of significance measured using Bonferroni-corrected p-values. These include CASP5 (p = 0.00226), CASP8 (p = 0.00587), CASP9 (p = 2.09 × 10-9), FPR2 (p = 0.00278), SH3BGRL3 (p = 0.00633), and TMEM88 (p = 0.00038). A ROC analysis revealed several combinations of genes to show high levels of discriminatory power in the comparison of neuropathic pain patients and control participants, of which the combination SH3BGRL3, TMEM88, and CASP9 achieved the highest level (AUROC = 0.923). The CASP9 gene was found to be common in five combinations of three genes revealing the highest levels of discriminatory power. In contrast, the gene combination PLAC8, ROMO1, and A3GALT2 showed the highest levels of discriminatory power in the comparison of neuropathic pain and nociceptive pain (AUROC = 0.919), when patients were grouped by S-LANSS scores. Molecules that demonstrate an active role in neuropathic pain have the potential to be developed into a biological measure for objective diagnostic tests, or as novel drug targets for improved pain management.


Assuntos
Neuralgia , Animais , Humanos , Medição da Dor , Doença Crônica , Modelos Animais , Neuralgia/diagnóstico , Neuralgia/genética , Neuralgia/terapia , Biomarcadores , Proteínas Adaptadoras de Transdução de Sinal , Proteínas , Proteínas de Membrana , Proteínas Mitocondriais
3.
Neuropharmacology ; 220: 109251, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126728

RESUMO

Long-term inhibition of kappa opioid receptor (KOR) signaling in peripheral pain-sensing neurons is a potential obstacle for development of peripherally-restricted KOR agonists that produce analgesia. Such a long-term inhibitory mechanism is invoked from activation of c-Jun N-terminal kinase (JNK) that follows a single injection of the KOR antagonist norbinaltorphimine (norBNI). This effect requires protein synthesis of an unknown mediator in peripheral pain-sensing neurons. Using 2D difference gel electrophoresis with tandem mass spectrometry, we have identified that the scaffolding protein 14-3-3γ is upregulated in peripheral sensory neurons following activation of JNK with norBNI. Knockdown of 14-3-3γ by siRNA eliminates the long-term reduction in KOR-mediated cAMP signaling by norBNI in peripheral sensory neurons in culture. Similarly, knockdown of 14-3-3γ in the rat hind paw abolished the norBNI-mediated long-term reduction in peripheral KOR-mediated antinociception. Further, overexpression of 14-3-3γ in KOR expressing CHO cells prevented KOR-mediated inhibition of cAMP signaling. These long-term effects are selective for KOR as heterologous regulation of other receptor systems was not observed. These data suggest that 14-3-3γ is both necessary and sufficient for the long-term inhibition of KOR by norBNI in peripheral sensory neurons.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Receptores Opioides kappa , Proteínas 14-3-3 , Analgésicos , Animais , Cricetinae , Cricetulus , Naltrexona/análogos & derivados , Dor , RNA Interferente Pequeno , Ratos , Receptores Opioides kappa/metabolismo
4.
Neuropharmacology ; 216: 109187, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35835212

RESUMO

Pain and pain management in the elderly population is a significant social and medical problem. Pain sensation is a complex phenomenon that typically involves activation of peripheral pain-sensing neurons (nociceptors) which send signals to the spinal cord and brain that are interpreted as pain, an unpleasant sensory experience. In this work, young (4-5 months) and aged (26-27 months) Fischer 344 x Brown Norway (F344xBN) rats were examined for nociceptor sensitivity to activation by thermal (cold and heat) and mechanical stimulation following treatment with inflammatory mediators and activators of transient receptor potential (TRP) channels. Unlike other senses that decrease in sensitivity with age, sensitivity of hindpaw nociceptors to thermal and mechanical stimulation was not different between young and aged F344xBN rats. Intraplantar injection of bradykinin (BK) produced greater thermal and mechanical allodynia in aged versus young rats, whereas only mechanical allodynia was greater in aged rats following injection of prostaglandin E2 (PGE2). Intraplantar injection of TRP channel activators, capsaicin (TRPV1), mustard oil (TRPA1) and menthol (TRPM8) each resulted in greater mechanical allodynia in aged versus young rats and capsaicin-induced heat allodynia was also greater in aged rats. A treatment-induced allodynia that was greater in young rats was never observed. The anti-allodynic effects of intraplantar injection of kappa and delta opioid receptor agonists, salvinorin-A and D-Pen2,D-Pen5]enkephalin (DPDPE), respectively, were greater in aged than young rats, whereas mu opioid receptor agonists, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) and morphine, were not effective in aged rats. Consistent with these observations, in primary cultures of peripheral sensory neurons, inhibition of cAMP signaling in response to delta and kappa receptor agonists was greater in cultures derived from aged rats. By contrast, mu receptor agonists did not inhibit cAMP signaling in aged rats. Thus, age-related changes in nociceptors generally favor increased pain signaling in aged versus young rats, suggesting that changes in nociceptor sensitivity may play a role in the increased incidence of pain in the elderly population. These results also suggest that development of peripherally-restricted kappa or delta opioid receptor agonists may provide safer and effective pain relief for the elderly.


Assuntos
Hiperalgesia , Receptores Opioides delta , Idoso , Analgésicos Opioides/farmacologia , Animais , Capsaicina/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Encefalinas , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Nociceptores , Dor , Ratos , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Células Receptoras Sensoriais
5.
Pharmacol Res Perspect ; 9(6): e00887, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34713624

RESUMO

Opioid overdose is a leading cause of death in the United States. The only treatment available currently is the competitive antagonist, naloxone (Narcan® ). Although naloxone is very effective and has saved many lives, as a competitive antagonist it has limitations. Due to the short half-life of naloxone, renarcotization can occur if the ingested opioid agonist remains in the body longer. Moreover, because antagonism by naloxone is surmountable, renarcotization can also occur in the presence of naloxone if a relatively larger dose of opioid agonist is taken. In such circumstances, a long-lasting, non-surmountable antagonist would offer an improvement in overdose treatment. Methocinnamox (MCAM) has been reported to have a long duration of antagonist action at mu opioid receptors in vivo. In HEK cells expressing the human mu opioid receptor, MCAM antagonism of mu agonist-inhibition of cAMP production was time-dependent, non-surmountable and non-reversible, consistent with (pseudo)-irreversible binding. In vivo, MCAM injected locally into the rat hindpaw antagonized mu agonist-mediated inhibition of thermal allodynia for up to 96 h. By contrast, antagonism by MCAM of delta or kappa agonists in HEK cells and in vivo was consistent with simple competitive antagonism. Surprisingly, MCAM also shifted the concentration-response curves of mu agonists in HEK cells in the absence of receptor reserve in a ligand-dependent manner. The shift in the [D-Ala2 ,N-MePhe4 ,Gly-ol5 ]-enkephalin (DAMGO) concentration-response curve by MCAM was insensitive to naloxone, suggesting that in addition to (pseudo)-irreversible orthosteric antagonism, MCAM acts allosterically to alter the affinity and/or intrinsic efficacy of mu agonists.


Assuntos
Cinamatos/farmacologia , Derivados da Morfina/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides mu/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Células HEK293 , Humanos , Ligantes , Masculino , Naloxona/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo , Fatores de Tempo
6.
Neuropharmacology ; 151: 208-218, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30776373

RESUMO

Receptor heteromers often display distinct pharmacological and functional properties compared to the individual receptor constituents. In this study, we compared the properties of the DOP-KOP heteromer agonist, 6'-guanidinonaltrindole (6'-GNTI), with agonists for DOP ([D-Pen2,5]-enkephalin [DPDPE]) and KOP (U50488) in peripheral sensory neurons in culture and in vivo. In primary cultures, all three agonists inhibited PGE2-stimulated cAMP accumulation as well as activated extracellular signal-regulated kinase 1/2 (ERK) with similar efficacy. ERK activation by U50488 was Gi-protein mediated but that by DPDPE or 6'-GNTI was Gi-protein independent (i.e., pertussis toxin insensitive). Brief pretreatment with DPDPE or U50488 resulted in loss of cAMP signaling, however, no desensitization occurred with 6'-GNTI pretreatment. In vivo, following intraplantar injection, all three agonists reduced thermal nociception. The dose-response curves for DPDPE and 6'-GNTI were monotonic whereas the curve for U50488 was an inverted U-shape. Inhibition of ERK blocked the downward phase and shifted the curve for U50488 to the right. Following intraplantar injection of carrageenan, antinociceptive responses to either DPDPE or U50488 were transient but could be prolonged with inhibitors of 12/15-lipoxgenases (LOX). By contrast, responsiveness to 6'-GNTI remained for a prolonged time in the absence of LOX inhibitors. Further, pretreatment with the 12/15-LOX metabolites, 12- and 15- hydroxyeicosatetraenoic acid, abolished responses to U50488 and DPDPE but had no effect on 6'-GNTI-mediated responses either in cultures or in vivo. Overall, these results suggest that DOP-KOP heteromers exhibit unique signaling and functional regulation in peripheral sensory neurons and may be a promising therapeutic target for the treatment of pain.


Assuntos
Analgésicos Opioides/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Mol Neurobiol ; 55(3): 2420-2430, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28361271

RESUMO

Chronic neuropathic pain (CNP) is one of the most significant unmet clinical needs in modern medicine. Alongside the lack of effective treatments, there is a great deficit in the availability of objective diagnostic methods to reliably facilitate an accurate diagnosis. We therefore aimed to determine the feasibility of a simple diagnostic test by analysing differentially expressed genes in the blood of patients diagnosed with CNP of the lower back and compared to healthy human controls. Refinement of microarray expression data was performed using correlation analysis with 3900 human 2-colour microarray experiments. Selected genes were analysed in the dorsal horn of Sprague-Dawley rats after L5 spinal nerve ligation (SNL), using qRT-PCR and ddPCR, to determine possible associations with pathophysiological mechanisms underpinning CNP and whether they represent translational biomarkers of CNP. We found that of the 15 potential biomarkers identified, tissue inhibitor of matrix metalloproteinase-1 (TIMP1) gene expression was upregulated in chronic neuropathic lower back pain (CNBP) (p = 0.0049) which positively correlated (R = 0.68, p = ≤0.05) with increased plasma TIMP1 levels in this group (p = 0.0433). Moreover, plasma TIMP1 was also significantly upregulated in CNBP than chronic inflammatory lower back pain (p = 0.0272). In the SNL model, upregulation of the Timp1 gene was also observed (p = 0.0058) alongside a strong trend for the upregulation of melanocortin 1 receptor (p = 0.0847). Our data therefore highlights several genes that warrant further investigation, and of these, TIMP1 shows the greatest potential as an accessible and translational CNP biomarker.


Assuntos
Dor Crônica/diagnóstico , Dor Crônica/genética , Marcadores Genéticos/genética , Neuralgia/diagnóstico , Neuralgia/genética , Biossíntese de Proteínas/genética , Animais , Dor Crônica/terapia , Humanos , Dor Lombar/diagnóstico , Dor Lombar/genética , Dor Lombar/terapia , Masculino , Neuralgia/terapia , Células do Corno Posterior/metabolismo , Células do Corno Posterior/patologia , Ratos , Ratos Sprague-Dawley , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-1/genética , Resultado do Tratamento
9.
Artigo em Inglês | MEDLINE | ID: mdl-25988529

RESUMO

Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.


Assuntos
Endocanabinoides/metabolismo , Dor Nociceptiva/fisiopatologia , Ratos Endogâmicos WKY/fisiologia , Ratos Sprague-Dawley/fisiologia , Estresse Psicológico/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Animais , Modelos Animais de Doenças , Formaldeído , Lateralidade Funcional , Predisposição Genética para Doença , Temperatura Alta , Masculino , Atividade Motora/fisiologia , Células do Corno Posterior/fisiologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Endogâmicos WKY/psicologia , Ratos Sprague-Dawley/psicologia , Resiliência Psicológica , Especificidade da Espécie , Natação
10.
Prog Neurobiol ; 121: 1-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25010858

RESUMO

The importance of the modulation of pain by emotion is now widely recognised. In particular, stress and anxiety, depending on their nature, duration and intensity, can exert potent, but complex, modulatory influences typified by either a reduction or exacerbation of the pain state. Exposure to either acute or chronic stress can increase pain responding under experimental conditions and exacerbate clinical pain disorders. There is evidence that exposure to chronic or repeated stress can produce maladaptive neurobiological changes in pathways associated with pain processing, resulting in stress-induced hyperalgesia (SIH). Preclinical studies of SIH are essential for our understanding of the mechanisms underpinning stress-related pain syndromes and for the identification of neural pathways and substrates, and the development of novel therapeutic agents for their clinical management. In this review, we describe clinical and pre-clinical models used to study SIH and discuss the neural substrates, neurotransmitters and neuromodulatory systems involved in this phenomenon.


Assuntos
Hiperalgesia/etiologia , Estresse Psicológico/complicações , Estresse Psicológico/epidemiologia , Animais , Encéfalo/patologia , Humanos , Dor/etiologia , Dor/patologia , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...